Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell Rep ; 42(5): 112421, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2296271

RESUMEN

Therapeutic antibodies are an important tool in the arsenal against coronavirus infection. However, most antibodies developed early in the pandemic have lost most or all efficacy against newly emergent strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), particularly those of the Omicron lineage. Here, we report the identification of a panel of vaccinee-derived antibodies that have broad-spectrum neutralization activity. Structural and biochemical characterization of the three broadest-spectrum antibodies reveal complementary footprints and differing requirements for avidity to overcome variant-associated mutations in their binding footprints. In the K18 mouse model of infection, these three antibodies exhibit protective efficacy against BA.1 and BA.2 infection. This study highlights the resilience and vulnerabilities of SARS-CoV-2 antibodies and provides road maps for further development of broad-spectrum therapeutics.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Animales , Ratones , SARS-CoV-2 , Anticuerpos Antivirales/uso terapéutico , Anticuerpos ampliamente neutralizantes
2.
Antiviral Res ; 212: 105580, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2249370

RESUMEN

Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initially infects the respiratory tract, it also directly or indirectly affects other organs, including the brain. However, little is known about the relative neurotropism of SARS-CoV-2 variants of concern (VOCs), including Omicron (B.1.1.529), which emerged in November 2021 and has remained the dominant pathogenic lineage since then. To address this gap, we examined the relative ability of Omicron, Beta (B.1.351), and Delta (B.1.617.2) to infect the brain in the context of a functional human immune system by using human angiotensin-converting enzyme 2 (hACE2) knock-in triple-immunodeficient NGC mice with or without reconstitution with human CD34+ stem cells. Intranasal inoculation of huCD34+-hACE2-NCG mice with Beta and Delta resulted in productive infection of the nasal cavity, lungs, and brain on day 3 post-infection, but Omicron was surprisingly unique in its failure to infect either the nasal tissue or brain. Moreover, the same infection pattern was observed in hACE2-NCG mice, indicating that antiviral immunity was not responsible for the lack of Omicron neurotropism. In independent experiments, we demonstrate that nasal inoculation with Beta or with D614G, an ancestral SARS-CoV-2 with undetectable replication in huCD34+-hACE2-NCG mice, resulted in a robust response by human innate immune cells, T cells, and B cells, confirming that exposure to SARS-CoV-2, even without detectable infection, is sufficient to induce an antiviral immune response. Collectively, these results suggest that modeling of the neurologic and immunologic sequelae of SARS-CoV-2 infection requires careful selection of the appropriate SARS-CoV-2 strain in the context of a specific mouse model.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Encéfalo , Antivirales , Modelos Animales de Enfermedad
3.
Database (Oxford) ; 20232023 02 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2243011

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seen multiple anti-SARS-CoV-2 antibodies being generated globally. It is difficult, however, to assemble a useful compendium of these biological properties if they are derived from experimental measurements performed at different sites under different experimental conditions. The Coronavirus Immunotherapeutic Consortium (COVIC) circumvents these issues by experimentally testing blinded antibodies side by side for several functional activities. To collect these data in a consistent fashion and make it publicly available, we established the COVIC database (COVIC-DB, https://covicdb.lji.org/). This database enables systematic analysis and interpretation of this large-scale dataset by providing a comprehensive view of various features such as affinity, neutralization, in vivo protection and effector functions for each antibody. Interactive graphs enable direct comparisons of antibodies based on select functional properties. We demonstrate how the COVIC-DB can be utilized to examine relationships among antibody features, thereby guiding the design of therapeutic antibody cocktails. Database URL  https://covicdb.lji.org/.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Anticuerpos Antivirales , Inmunoterapia
4.
Ann N Y Acad Sci ; 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: covidwho-2237733

RESUMEN

Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.

5.
Ann N Y Acad Sci ; 2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2052884

RESUMEN

The COVID-19 pandemic caught the world largely unprepared, including scientific and policy communities. On April 10-13, 2022, researchers across academia, industry, government, and nonprofit organizations met at the Keystone symposium "Lessons from the Pandemic: Responding to Emerging Zoonotic Viral Diseases" to discuss the successes and challenges of the COVID-19 pandemic and what lessons can be applied moving forward. Speakers focused on experiences not only from the COVID-19 pandemic but also from outbreaks of other pathogens, including the Ebola virus, Lassa virus, and Nipah virus. A general consensus was that investments made during the COVID-19 pandemic in infrastructure, collaborations, laboratory and manufacturing capacity, diagnostics, clinical trial networks, and regulatory enhancements-notably, in low-to-middle income countries-must be maintained and strengthened to enable quick, concerted responses to future threats, especially to zoonotic pathogens.

6.
Nat Commun ; 13(1): 5814, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2050372

RESUMEN

Monoclonal antibodies are a promising approach to treat COVID-19, however the emergence of SARS-CoV-2 variants has challenged the efficacy and future of these therapies. Antibody cocktails are being employed to mitigate these challenges, but neutralization escape remains a major challenge and alternative strategies are needed. Here we present two anti-SARS-CoV-2 spike binding antibodies, one Class 1 and one Class 4, selected from our non-immune human single-chain variable fragment (scFv) phage library, that are engineered into four, fully-human IgG-like bispecific antibodies (BsAb). Prophylaxis of hACE2 mice and post-infection treatment of golden hamsters demonstrates the efficacy of the monospecific antibodies against the original Wuhan strain, while promising in vitro results with the BsAbs demonstrate enhanced binding and distinct synergistic effects on neutralizing activity against circulating variants of concern. In particular, one BsAb engineered in a tandem scFv-Fc configuration shows synergistic neutralization activity against several variants of concern including B.1.617.2. This work provides evidence that synergistic neutralization can be achieved using a BsAb scaffold, and serves as a foundation for the future development of broadly reactive BsAbs against emerging variants of concern.


Asunto(s)
Anticuerpos Biespecíficos , COVID-19 , Anticuerpos de Cadena Única , Animales , Anticuerpos Biespecíficos/genética , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/uso terapéutico , Cricetinae , Humanos , Inmunoglobulina G/genética , Ratones , Pruebas de Neutralización , SARS-CoV-2/genética , Anticuerpos de Cadena Única/genética , Glicoproteína de la Espiga del Coronavirus/genética
7.
Antiviral Res ; 204: 105370, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1906743

RESUMEN

Next-generation COVID-19 vaccines are critical due to the ongoing evolution of SARS-CoV-2 virus and rapid waning duration of the neutralizing antibody response against current vaccines. The mRNA vaccines mRNA-1273 and BNT162b2 were developed using linear transcripts encoding the prefusion-stabilized trimers (S-2P) of the wildtype spike, which have shown a reduced neutralizing activity against the variants of concern B.1.617.2 and B.1.1.529. Recently, a new version of spike trimer, termed VFLIP (five (V) prolines, Flexibly-Linked, Inter-Protomer disulfide) was developed. Based on the original amino acid sequence of the wildtype spike, VFLIP was genetically engineered by using five proline substitutions, a flexible cleavage site amino acid linker, and an inter-protomer disulfide bond. It has been suggested to possess native-like glycosylation, and greater pre-fusion trimeric stability as opposed to S-2P. Here, we report that the spike protein VFLIP-X, containing six rationally substituted amino acids to reflect emerging variants (K417N, L452R, T478K, E484K, N501Y and D614G), offers a promising candidate for a next-generation SARS-CoV-2 vaccine. Mice immunized by a circular mRNA (circRNA) vaccine prototype producing VFLIP-X had detectable neutralizing antibody titers for up to 7 weeks post-boost against SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs). In addition, a balance in TH1 and TH2 responses was achieved by immunization with VFLIP-X. Our results indicate that the VFLIP-X delivered by circRNA induces humoral and cellular immune responses, as well as broad neutralizing activity against SARS-CoV-2 variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , ARN Circular , SARS-CoV-2 , Vacunas de ARNm , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Disulfuros , Ratones , Prolina , Subunidades de Proteína , ARN Circular/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas de ARNm/genética
8.
Immunity ; 55(5): 738-748, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1838897

RESUMEN

The brutal toll of another viral pandemic can be blunted by investing now in research that uncovers mechanisms of broad-based immunity so we may have vaccines and therapeutics at the ready. We do not know exactly what pathogen may trigger the next wave or next pandemic. We do know, however, that the human immune system must respond and must be bolstered with effective vaccines and other therapeutics to preserve lives and livelihoods. These countermeasures must focus on features conserved among families of pathogens in order to be responsive against something yet to emerge. Here, we focus on immunological approaches to mitigate the impact of the next emerging virus pandemic by developing vaccines that elicit both broadly protective antibodies and T cells. Identifying human immune mechanisms of broad protection against virus families with pandemic potential will be our best defense for humanity in the future.


Asunto(s)
COVID-19 , Vacunas , Anticuerpos Antivirales , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Linfocitos T
9.
Sci Transl Med ; 14(645): eabm2311, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1765074

RESUMEN

The successful development of several coronavirus disease 2019 (COVID-19) vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants that are able to evade vaccine-induced neutralizing antibodies, real-world vaccine efficacy has begun to show differences across the two approved mRNA platforms, BNT162b2 and mRNA-1273; these findings suggest that subtle variation in immune responses induced by the BNT162b2 and mRNA-1273 vaccines may confer differential protection. Given our emerging appreciation for the importance of additional antibody functions beyond neutralization, we profiled the postboost binding and functional capacity of humoral immune responses induced by the BNT162b2 and mRNA-1273 vaccines in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to variants of concern. However, differences emerged across epitope-specific responses, with higher concentrations of receptor binding domain (RBD)- and N-terminal domain-specific IgA observed in recipients of mRNA-1273. Antibodies eliciting neutrophil phagocytosis and natural killer cell activation were also increased in mRNA-1273 vaccine recipients as compared to BNT162b2 recipients. RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector functions induced across the mRNA vaccines. These data provide insights into potential differences in protective immunity conferred by these vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
10.
Science ; 375(6585): 1133-1139, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1736002

RESUMEN

The vaccine and drug discovery responses to COVID-19 have worked far better than could have been imagined. Yet by the end of 2021, more than 5 million people had died, and the pandemic continues to evolve and rage globally. This Review will describe how each of the vaccines, antibody therapies, and antiviral drugs that have been approved to date were built on decades of investment in technology and basic science. We will caution that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has so far proven a straightforward test of our pandemic preparedness, and we will recommend steps we should undertake now to prepare for, to minimize the effects of, and ideally to prevent future pandemics. Other Reviews in this series describe the interactions of SARS-CoV-2 with the immune system and those therapies that target the host response to infection.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Vacunas contra la COVID-19 , COVID-19/prevención & control , Pandemias/prevención & control , SARS-CoV-2/inmunología , Anticuerpos Monoclonales/uso terapéutico , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Progresión de la Enfermedad , Desarrollo de Medicamentos , Descubrimiento de Drogas , Humanos , SARS-CoV-2/efectos de los fármacos , Desarrollo de Vacunas , Vacunología , Vacunas Virales/inmunología , Virosis/tratamiento farmacológico , Virosis/prevención & control
12.
Cell Res ; 31(12): 1226-1227, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1612183
13.
MAbs ; 14(1): 2002236, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1585298

RESUMEN

Coronavirus disease 2019 (COVID-19) is an evolving global public health crisis in need of therapeutic options. Passive immunization of monoclonal antibodies (mAbs) represents a promising therapeutic strategy capable of conferring immediate protection from SARS-CoV-2 infection. Herein, we describe the discovery and characterization of neutralizing SARS-CoV-2 IgG and VHH antibodies from four large-scale phage libraries. Each library was constructed synthetically with shuffled complementarity-determining region loops from natural llama and human antibody repertoires. While most candidates targeted the receptor-binding domain of the S1 subunit of SARS-CoV-2 spike protein, we also identified a neutralizing IgG candidate that binds a unique epitope on the N-terminal domain. A select number of antibodies retained binding to SARS-CoV-2 variants Alpha, Beta, Gamma, Kappa and Delta. Overall, our data show that synthetic phage libraries can rapidly yield SARS-CoV-2 S1 antibodies with therapeutically desirable features, including high affinity, unique binding sites, and potent neutralizing activity in vitro, and a capacity to limit disease in vivo.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Técnicas de Visualización de Superficie Celular , Inmunoglobulina G/inmunología , Biblioteca de Péptidos , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/metabolismo , Especificidad de Anticuerpos , Sitios de Unión de Anticuerpos , COVID-19/metabolismo , COVID-19/prevención & control , COVID-19/virología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Epítopos , Femenino , Interacciones Huésped-Patógeno , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Inmunoglobulina G/farmacología , Mesocricetus , SARS-CoV-2/patogenicidad , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/farmacología , Células Vero
14.
Res Sq ; 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1417405

RESUMEN

Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.

15.
Cell Rep Med ; 2(9): 100405, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1377862

RESUMEN

Recently approved vaccines have shown remarkable efficacy in limiting SARS-CoV-2-associated disease. However, with the variety of vaccines, immunization strategies, and waning antibody titers, defining the correlates of immunity across a spectrum of antibody titers is urgently required. Thus, we profiled the humoral immune response in a cohort of non-human primates immunized with a recombinant SARS-CoV-2 spike glycoprotein (NVX-CoV2373) at two doses, administered as a single- or two-dose regimen. Both antigen dose and boosting significantly altered neutralization titers and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were associated with distinct levels of protection in the upper and lower respiratory tract. Moreover, NVX-CoV2373 elicited antibodies that functionally targeted emerging SARS-CoV-2 variants. Collectively, the data presented here suggest that a single dose may prevent disease via combined Fc/Fab functions but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.


Asunto(s)
Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Saponinas/inmunología , Animales , Anticuerpos Neutralizantes/efectos de los fármacos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Relación Dosis-Respuesta Inmunológica , Femenino , Inmunidad Humoral/inmunología , Inmunogenicidad Vacunal , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Macaca mulatta , Masculino , Nanopartículas , Primates/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus , Vacunación
16.
Science ; 371(6529)2021 02 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1309798

RESUMEN

Understanding immune memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for improving diagnostics and vaccines and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥6 months after infection. Immunoglobulin G (IgG) to the spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month after symptom onset. SARS-CoV-2-specific CD4+ T cells and CD8+ T cells declined with a half-life of 3 to 5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , Memoria Inmunológica , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología , Estados Unidos , Adulto Joven
17.
Cell Rep ; 36(4): 109452, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1306891

RESUMEN

SARS-CoV-2 variants that attenuate antibody neutralization could jeopardize vaccine efficacy. We recently reported the protective activity of an intranasally administered spike protein-based chimpanzee adenovirus-vectored vaccine (ChAd-SARS-CoV-2-S) in animals, which has advanced to human trials. Here, we assessed its durability, dose response, and cross-protective activity in mice. A single intranasal dose of ChAd-SARS-CoV-2-S induced durably high neutralizing and Fc effector antibody responses in serum and S-specific IgG and IgA secreting long-lived plasma cells in the bone marrow. Protection against a historical SARS-CoV-2 strain was observed across a 100-fold vaccine dose range and over a 200-day period. At 6 weeks or 9 months after vaccination, serum antibodies neutralized SARS-CoV-2 strains with B.1.351, B.1.1.28, and B.1.617.1 spike proteins and conferred almost complete protection in the upper and lower respiratory tracts after challenge with variant viruses. Thus, in mice, intranasal immunization with ChAd-SARS-CoV-2-S provides durable protection against historical and emerging SARS-CoV-2 strains.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/farmacología , Administración Intranasal/métodos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , Ratones , Vacunación/métodos , Vacunas Virales/inmunología
19.
Cell ; 183(1): 1-3, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: covidwho-809419

RESUMEN

The pandemic has impacted every scientist differently. Many negative impacts are frequently discussed. Here we highlight unexpected positives that we have found and hope will persist: improved access to experts; deeper and broader human engagement among colleagues, collaborators, and competitors; and significant democratization of research.


Asunto(s)
COVID-19/psicología , Pandemias/ética , Humanos , Optimismo/psicología , SARS-CoV-2/patogenicidad
20.
Trends Microbiol ; 28(8): 605-618, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-324606

RESUMEN

SARS-Coronavirus-2 (SARS-CoV-2) causes Coronavirus disease 2019 (COVID-19), an infectious respiratory disease causing thousands of deaths and overwhelming public health systems. The international spread of SARS-CoV-2 is associated with the ease of global travel, and societal dynamics, immunologic naiveté of the host population, and muted innate immune responses. Based on these factors and the expanding geographic scale of the disease, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic-the first caused by a coronavirus. In this review, we summarize the current epidemiological status of COVID-19 and consider the virological and immunological lessons, animal models, and tools developed in response to prior SARS-CoV and MERS-CoV outbreaks that can serve as resources for development of SARS-CoV-2 therapeutics and vaccines. In particular, we discuss structural insights into the SARS-CoV-2 spike protein, a major determinant of transmissibility, and discuss key molecular aspects that will aid in understanding and fighting this new global threat.


Asunto(s)
Betacoronavirus/química , Betacoronavirus/inmunología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , Animales , COVID-19 , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Modelos Animales de Enfermedad , Humanos , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/terapia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA